OKLAHOMASTATE UNIVERSITY
 SChool of electrical and computer engineering school of mechanical and aerospace engineering

ECEN/MAE 5513
Stochastic Systems
Fall 2011
Midterm Exam \#2

PLEASE DO ALL FIVE PROBLEMS

Name : \qquad
\qquad

Problem 1:

Show that the joint distribution function of random variables X and Y, conditioning on the event $B=\left\{y_{a}<Y \leq y_{b}\right\}$ is

$$
F_{X, Y}\left(x, y \mid y_{a}<Y \leq y_{b}\right)= \begin{cases}0, & y \leq y_{a} \\ \frac{F_{X, Y}(x, y)-F_{X, Y}\left(x, y_{a}\right)}{F_{Y}\left(y_{b}\right)-F_{Y}\left(y_{a}\right)}, & y_{a}<y \leq y_{b}, \\ \frac{F_{X, Y}\left(x, y_{b}\right)-F_{X, Y}\left(x, y_{a}\right)}{F_{Y}\left(y_{b}\right)-F_{Y}\left(y_{a}\right)}, & y_{b}<y\end{cases}
$$

and find the corresponding joint density function conditioning on the same event B as $f_{X, Y}\left(x, y \mid y_{a}<Y \leq y_{b}\right)$.

Problem 2:

Three statistically independent random variables X_{1}, X_{2} and X_{3} are defined by

$$
\bar{X}_{1}=-1, \sigma_{X_{1}}^{2}=2.0, \bar{X}_{2}=0.6, \sigma_{X_{2}}^{2}=1.5, \text { and } \bar{X}_{3}=1.8, \sigma_{X_{3}}^{2}=0.8
$$

Write the equation describing the Gaussian approximation for the density function of the sum $X=X_{1}+X_{2}+X_{3}$.

Problem 3:

The zero-mean and unit-variance Gaussian random variables X and Y are statistically independent. Find the probability density function of the random variable $W=\sqrt{X^{2}+Y^{2}}$.

Problem 4:

Two ransom variables X and Y are related by the expression

$$
Y=a X+b
$$

where a and b are any real numbers.
a) Show that their correlation coefficient is

$$
\rho=\left\{\begin{array}{lc}
1, & \text { if } a>0 \text { for any } b \\
-1, & \text { if } a<0 \text { for any } b
\end{array}\right.
$$

b) Show that their covariance is

$$
C_{X Y}=a \sigma_{X}^{2},
$$

where σ_{X}^{2} is the variance of X.

Problem 5:

Suppose the annual snowfalls (accumulated depths in meters) for two nearby alpines ski resorts are adequately represented by jointly Gaussian random variables X and Y, for which $\rho=0.82$, $\sigma_{X}=1.5 m, \sigma_{Y}=1.2 m$, and $R_{X Y}=81.476 \mathrm{~m}^{2}$. If the average snowfall at one resort is 10 m , what is the average at the other resort?

